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Imbalance of the dopaminergic system is involved in various
neurological and neuropsychiatric disorders, for example, Par-
kinson’s disease, schizophrenia, and drug abuse.[1] Selective at-
traction of one dopamine receptor subtype could represent an
improved therapeutic approach or at least a good way to eval-
uate the (patho)physiological functions of this subtype in the
disorder. Here we focused on the dopamine D3 receptor, since
this subtype plays an important neuroregulatory role in several
diseases and possesses a distinct localization in the central
nervous system.[2] As D3 receptors display high sequence iden-
tity to D2 receptors, cross-reactivity is a problem for most com-
pounds used. Although this field of research has been worked
on for decades, many lead structures have unsatisfying selec-
tivity. Since numerous described compounds with diverse
structural elements showed some D3 receptor preference, we
focused on these elements—first by virtual and then by real
screening of the most promising compounds—to find new
lead candidates for further optimization.

Virtually screened synthetic compounds from collections of
Specs (229 685 compounds from release June 2003, Specs,
Delft, The Netherlands) and Interbioscreen (IBS; 25 601 com-
pounds from release February 2004, Interbioscreen, Moscow,
Russia) were investigated as potentially selective ligands at
dopamine D3 receptors. We performed this screening by using
analogues of BP897 (1), a D3 receptor-preferring partial agonist

in clinical development, and related structures as a starting
point. Virtual screening was performed in two stages. In the

first stage, we trained a support vector machine (SVM) on the
reference set and constructed a filter for D3 receptor-selective
ligands. Based on the prediction of this virtual filter, eleven
compounds from the IBS collection and the reference BP897
were tested for binding affinity at D2 and D3 receptors. In the
second stage, we performed a similarity search with the most
promising candidate molecule from the first round against the
Specs collection. The parameters for this similarity search were
extracted from the SVM model of the BP897 analogues. Four
out of five compounds exhibited nanomolar affinity at the D3

receptor, including a novel scaffold structure. The Ki value for
the best molecule was 40�6 nm.

Ligand-based virtual screening

We used analogues of BP897 and related structures as a refer-
ence active set.[3] The compounds from this set possess the fol-
lowing features: i) a lipophilic amine moiety, that is, phenylpi-
perazine in BP897, ii) a spacer, usually a linear tetramethylene
chain, and iii) a hydrophobic residue connected by an amide
bond, which has proven to be favorable for high receptor af-
finity.[3] In order to fulfill structural requirements for high-affini-
ty binding, the basic nitrogen connected to the aryl group
through an aliphatic linker was preserved. For all compounds
in this series, Ki values of D2 and D3 receptor affinities were
screened in radioligand binding assays as described.[3]

Compounds were encoded by three-point pharmacophore
(3PP) fingerprints available from the MOE software suite.[4] For
the first virtual screening round, an SVM was trained on the
prediction of potential D3 receptor ligands. We defined mole-
cules that have measured Ki values below 1 mm for the D2 or
D3 receptor as “active” compounds (331 out of 395 reference
compounds).[5] For cross-validation, this active set was split
into four nonoverlapping subsets. During validation we “mim-
icked” a real screening experiment by addition of compounds
known to bind to the D2 or D3 receptor to the screening data-
base and estimated the efficiency with which these com-
pounds were retrieved from the screened database. For this,
we ranked all screening compounds based on the SVM predic-
tions and optimized SVM parameters, so that the compounds
that we mixed with the screening data were at the top of the
ranked list.[6–8] The observed enrichment gave an estimation of
the expected percentage of active compounds from the IBS
dataset that are among the top 1 % of the ranked compounds.
In the cross-validation study, 50.6�1.3 % of the known active
compounds were retrieved within 1 % of the IBS collection—a
result that is significantly above random screening. The train-
ing procedure with parameter optimization lasted less than 30
minutes on a Linux cluster with 16 CPUs.

The application of “active learning” further increased the en-
richment to 91.8�1.2 % of validation actives in the top 1 % of
the ranked IBS collection (for details of the SVM training proce-
dure and the active-learning concept, see Supporting Informa-
tion). This was a consequence of the more fine-grained com-
pound sampling from the neighborhood of the known actives
in pharmacophore space.
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Supporting information for this article is available on the WWW under
http ://www.chembiochem.org or from the author: construction of an ho-
mology model for the D3 receptor, docking of compounds into the con-
structed homology model, and analysis of predicted binding modes. The
Supporting Information also includes full details of SVM training and the
binding studies.
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Selection of D3 receptor-specific ligands

We trained a regression SVM to predict the logarithm of the
ratio between Ki values for D2 and D3 receptors. The hq2i of the
fourfold cross validation was 0.40�0.15. The relatively low hq2i
is explained by the marked similarity between D2 and D3 recep-
tor-binding behavior.[2] The final prediction system was a com-
bination of the two virtual filters described above: binary SVM
optimized with active learning, and regression SVM. First, we
selected compounds that were similar to the reference set,
then we ranked them according to the predicted log (KiD3/KiD2)
to pick up potential D3 receptor-selective compounds. The list
of the selected molecules obtained was further processed
manually so as to exclude compounds with potentially reactive
groups or poor solubility. Compounds that are too similar to
the reference set were also excluded in order to identify com-
pounds with novel scaffolds. Ki measurement followed a similar
protocol as for the BP897 analogues.[3]

Results

Individual compounds exhibited preferential binding at the D3

receptor, although Ki values for most of the molecules are in
the micromolar range, if any could be determined at all (cf.
Supporting Information). This observation can be explained by
the bias introduced during manual post-selection of molecules.
We avoided a pronounced similarity to BP897-like compounds;
this obviously resulted in lowering the D2 and D3 binding
activity.

In order to further increase D3 receptor affinity, we optimized
compound 2 using a similarity searching approach. Molecule 2

was the only ligand found in the first virtual screening round
with an experimental Ki<2 mm at the D3 receptor and Ki value
of 2–6 mm at the D2 receptor. For similarity calculations, we em-
ployed a modified distance metric for 3PP fingerprints space,
in which fingerprints were weighted based on their impor-
tance in our SVM regression model (cf. Supporting Informa-
tion). This procedure allowed for the selection of compounds
that are similar to 2, focusing on features that were considered
to be important for interaction with the receptor. Very similar
compounds and compounds with reactive groups were again
excluded manually. The testing results for the selected mole-
cules are given in Table 1. The chemical structures of the
tested molecules are shown in Scheme 1, aligned at their basic
nitrogen, which is assumed to be essential for this type of
G protein-receptor binding. As can be seen from Table 1, all
active compounds possess a common pattern of the aromatic
residue coupled to a potential hydrogen-bond donor (assum-
ing the protonated form) and separated by an aryl moiety
from the positively charged amine with an adjacent ring
system.

Although the most active compound in this series, 4, shows
nanomolar affinity at the D3 receptor accompanied by a ten-
fold D3 receptor preference in comparison to its D2 receptor af-
finity it must be stressed that 4[9] and 5 are quite similar to the
reference set. By using compound libraries, one can hardly
expect to retrieve totally unknown lead candidates. Neverthe-
less, compounds 2, 3, 6, and especially 7 disclose some novel
structural features that result in first hits as well as promising
new leads for dopamine-receptor subtype ligands in this over-

Table 1. Dopamine receptor affinities of compounds from the second vir-
tual screening round (from Specs catalogue)

Molecule Ki (D2) �SD [nm][a] N[b] Ki (D3) �SD [nm][a] N[b]

3 1414�516 2 1408�1068 2
4 554�97 4 40�6 4
5 417�60 8 139�17 5
6 201�48 8 96�21 7
7 4395�497 6 914�307 6

[a] Ki values (mean value with standard deviation (SD)) were measured in
CHO cells stably expressing hD2s and hD3 receptors by using [3H]spiper-
one. [b] Number of experiments.

Scheme 1. Compounds selected for testing based on their similarity to
compound 2. Structures were aligned according to the position of the basic
nitrogen (dotted line). Three different parts of the molecules were distin-
guished: A) an aromatic moiety, B) an aliphatic linker, C) a hydrophobic part
connected through a basic nitrogen.
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crowded area of drug development. Together with the other
data obtained from virtual and real-compound screening (cf.
Supporting Information) one can extract structural characteris-
tics that have not or have only rarely been applied to dopa-
mine D3 receptor ligands. Compounds 6 and 7 already display
slight D3 receptor preferences; this shows the success of our
approach, and give good hopes for 7 for further optimization
that is distinct from well-known structure–activity relationships.
For the first time, iterative virtual screening cycles with SVM
have been successfully applied to entirely ligand-based search-
ing for novel ligands. The concept offers a rapid way to identi-
fy lead-structure candidates with minimal experimental effort,
even in the absence of receptor-structure information.
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